

2-Numerical modeling of the ROV

Characteristics	Symbol	Value
Length	L	500 [mm]
Width	B	350 [mm]
Height	H	250 [mm]
Horizontal spacing	A	215 [mm]
Vertical spacing	С	140 [mm]
Propellers diameter	d	50 [mm]

Alpha = 25

²⁴

5-Conclusion

- · CFD results have good agreement with experimental data
- •The turbulent flow around the ROV body
 - characterized by flow separation
 - inducing the creation of separated region behind the ROV;

•The effects of flow separation around the ROV body are felt in form of reduced velocity;

•The action of the propellers reduces the separated region and low pressure gradient.

- ROV's resistance and separated region decrease at high angle of attack;
 - Linear dependence between the separated region and the drag pressure.
 - The smaller separated region is, the smaller the ROV resistance is obtained, leading to energy savings.

Thank you for your attention